Question (Binary Tree)
Solution
#include<iostream>
#include<exception>
using namespace std;
#include<string>
#include<stlib.h>
bool ERR_Flag=false;
template
//Set this global error flag to true when there is no
//left/right child for a given node
#include<exception>
using namespace std;
#include<string>
#include<stlib.h>
bool ERR_Flag=false;
template
//Set this global error flag to true when there is no
//left/right child for a given node
class AC_BinaryTree
{
int no_Of_Ele;
T *ele;
int capacity;
public:
//allocate memory to store elements and
//initialize data members
//capacity = 20
AC_BinaryTree();
bool isEmpty();
bool isFull();
//Function to insert data in the ACBinaryTree
//Insertion can be done only at the last
// that is if there are ‘n’ elements in the tree
// new element can be inserted only in position ‘n+1’
//Check if the tree is full and insert if not so
//If tree is full then print “Tree full insertion cannot be made”
void insert(T);
//leftChild of a node in postion pos
//If there is no leftChild for the node
// then print “No left child”
T leftChild(int pos);
//rightChild of a node in postion pos
//If there is no rightChild for the node
// then print “No right child”
T rightChild(int pos);
//Parent of a node in position pos
T parent(int pos);
};
{
int no_Of_Ele;
T *ele;
int capacity;
public:
//allocate memory to store elements and
//initialize data members
//capacity = 20
AC_BinaryTree();
bool isEmpty();
bool isFull();
//Function to insert data in the ACBinaryTree
//Insertion can be done only at the last
// that is if there are ‘n’ elements in the tree
// new element can be inserted only in position ‘n+1’
//Check if the tree is full and insert if not so
//If tree is full then print “Tree full insertion cannot be made”
void insert(T);
//leftChild of a node in postion pos
//If there is no leftChild for the node
// then print “No left child”
T leftChild(int pos);
//rightChild of a node in postion pos
//If there is no rightChild for the node
// then print “No right child”
T rightChild(int pos);
//Parent of a node in position pos
T parent(int pos);
};
template < class T > AC_BinaryTree < T > :: AC_BinaryTree() { ele=new T[20]; no_Of_Ele=0; capacity=20; } template < class T > bool AC_BinaryTree < T > :: isEmpty() { return(!no_Of_Ele); } template < class T > bool AC_BinaryTree < T > :: isFull() { return(no_Of_Ele==20); } template < class T > void AC_BinaryTree < T > :: insert(T data) { if(no_Of_Ele < 20) ele[no_Of_Ele++]=data; else cout<<"Tree full insertion cannot be made"; } template < class T > T AC_BinaryTree < T > :: leftChild(int pos) { if(2*pos+1 < no_Of_Ele) { ERR_Flag=false; return(ele[2*pos+1]); } else { ERR_Flag=true; cout<<"No left child"; } return(ele[0]); } template < class T > T AC_BinaryTree < T > :: rightChild(int pos) { if(2*pos+1 < no_Of_Ele) { ERR_Flag=false; return(ele[2*pos+2]); } else { ERR_Flag=true; cout<<"No right child"; } return(ele[0]); } template < class T > T AC_BinaryTree < T > :: parent(int pos) { return(ele[(pos-1)/2]); }
int main()
{
int d_Choice,pos;
cin>>d_Choice;
int val;
string val1;
AC_BinaryTree g;
int data;
AC_BinaryTree g1;
string data1;
if(d_Choice == 1)
{
while(1)
{
int opt_Choice;
cin>>opt_Choice;
if(opt_Choice==1)
{
if(g.isEmpty())
cout<<“Empty”<<endl;
else
cout<<“Not empty”<<endl;
}
else if(opt_Choice==2)
{
if(g.isFull())
cout<<“Full”<<endl;
else
cout<<“Not full”<<endl; } else if(opt_Choice==3) { cin>>data;
g.insert(data);
}
else if(opt_Choice==4)
{
cin>>pos;
val = g.leftChild(pos);
if(!ERR_Flag)
cout<<val<<endl; } else if(opt_Choice==5) { cin>>pos;
val = g.rightChild(pos);
if(!ERR_Flag)
cout<<val<<endl; } else if(opt_Choice==6) { cin>>pos;
val = g.parent(pos);
cout<<val<<endl; } else if(opt_Choice==7) { exit(1); } } } if(d_Choice == 2) { while(1) { int opt_Choice; cin>>opt_Choice;
if(opt_Choice==1)
{
if(g1.isEmpty())
cout<<“Empty”<<endl;
else
cout<<“Not empty”<<endl;
}
else if(opt_Choice==2)
{
if(g1.isFull())
cout<<“Full”<<endl;
else
cout<<“Not full”<<endl; } else if(opt_Choice==3) { cin>>data1;
g1.insert(data1);
}
else if(opt_Choice==4)
{
cin>>pos;
val1 = g1.leftChild(pos);
if(!ERR_Flag)
cout<<val1<<endl; } else if(opt_Choice==5) { cin>>pos;
val1 = g1.rightChild(pos);
if(!ERR_Flag)
cout<<val1<<endl; } else if(opt_Choice==6) { cin>>pos;
val1 = g1.parent(pos);
cout<<val1<<endl;
}
else if(opt_Choice==7)
{
exit(1);
}
}
}
return(0);
}
{
int d_Choice,pos;
cin>>d_Choice;
int val;
string val1;
AC_BinaryTree g;
int data;
AC_BinaryTree g1;
string data1;
if(d_Choice == 1)
{
while(1)
{
int opt_Choice;
cin>>opt_Choice;
if(opt_Choice==1)
{
if(g.isEmpty())
cout<<“Empty”<<endl;
else
cout<<“Not empty”<<endl;
}
else if(opt_Choice==2)
{
if(g.isFull())
cout<<“Full”<<endl;
else
cout<<“Not full”<<endl; } else if(opt_Choice==3) { cin>>data;
g.insert(data);
}
else if(opt_Choice==4)
{
cin>>pos;
val = g.leftChild(pos);
if(!ERR_Flag)
cout<<val<<endl; } else if(opt_Choice==5) { cin>>pos;
val = g.rightChild(pos);
if(!ERR_Flag)
cout<<val<<endl; } else if(opt_Choice==6) { cin>>pos;
val = g.parent(pos);
cout<<val<<endl; } else if(opt_Choice==7) { exit(1); } } } if(d_Choice == 2) { while(1) { int opt_Choice; cin>>opt_Choice;
if(opt_Choice==1)
{
if(g1.isEmpty())
cout<<“Empty”<<endl;
else
cout<<“Not empty”<<endl;
}
else if(opt_Choice==2)
{
if(g1.isFull())
cout<<“Full”<<endl;
else
cout<<“Not full”<<endl; } else if(opt_Choice==3) { cin>>data1;
g1.insert(data1);
}
else if(opt_Choice==4)
{
cin>>pos;
val1 = g1.leftChild(pos);
if(!ERR_Flag)
cout<<val1<<endl; } else if(opt_Choice==5) { cin>>pos;
val1 = g1.rightChild(pos);
if(!ERR_Flag)
cout<<val1<<endl; } else if(opt_Choice==6) { cin>>pos;
val1 = g1.parent(pos);
cout<<val1<<endl;
}
else if(opt_Choice==7)
{
exit(1);
}
}
}
return(0);
}
0 comments:
Post a Comment